Influence of dilute feed and pH on electrochemical reduction of CO2 to CO on Ag in a continuous flow electrolyzer

نویسندگان

  • Byoungsu Kim
  • Sichao Ma
  • Huei-Ru Molly Jhong
  • Paul J.A. Kenis
چکیده

Electrochemical conversion of CO2 to useful chemical intermediates may be a promising strategy to help reduce CO2 emissions, while utilizing otherwise wasted excess renewable energy. Here we explore the effect of diluted CO2 streams (10–100% by volume using N2 as diluting inert gas) on the product selectivity and on the CO/CO2 conversion ratio for the electrochemical reduction of CO2 into CO, specifically using a gas diffusion electrode loaded with Ag catalyst in a continuous flow electrolyzer. When using diluted CO2 feeds for the electrolyzer, we still observed high Faradaic efficiencies for CO (>80%), high conversion ratios (up to 32% per pass), and partial current densities for CO of 29 mA/cm when operating the cell at 3.0 V. Most notably, we observed that the decrease in partial current density for CO was less than 45% when switching from a 100% CO2 feed to a 10% CO2 feed. Also, we studied the effect of pH and the interplay between pH and the diluted CO2 feed. We observed higher levels of CO formation as well as a higher Faradaic efficiency for CO when using an alkaline electrolyte, compared to when using a neutral or acidic electrolyte. However, the effect of CO2 concentration in the feed is more significant than the effect of pH on electrochemical reduction of CO2 to CO. ã 2015 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2D thermal modeling of a solid oxide electrolyzer cell (SOEC) for syngas production by H2O/CO2 co-electrolysis

Solid oxide fuel cells (SOFCs) can be operated in a reversed mode as electrolyzer cells for electrolysis of H2O and CO2. In this paper, a 2D thermal model is developed to study the heat/mass transfer and chemical/electrochemical reactions in a solid oxide electrolyzer cell (SOEC) for H2O/CO2 co-electrolysis. The model is based on 3 sub-models: a computational fluid dynamics (CFD) model describi...

متن کامل

Investigation of vessels pressure effect on PEM electrolyzer performance by using a new OneDimensional Dynamic Model

In recent years energy shortage and environmental impacts due to consuming fossil fuels have led to developing renewable energy sources systems. Since these sources are not reliable and are usually time dependent, an energy storing system like hydrogen production is required. In this regard, PEM electrolyzer can be efficiently used to decompose liquid water into hydrogen and oxygen. Because of ...

متن کامل

Preparation of Gd2O3 nanoparticles from a new precursor and their catalytic activity for electrochemical reduction of CO2 to CO

The mononuclear Gd(III) complex, [Gd(L)3(H2O)5] (where L is alizarin yellow R (NaC13H8N3O5)), has been prepared in H2O under reflux condition. The Gd(III) complex has been characterized by elemental analysis and spectroscopic methods (UV–Vis and FT–IR). The Gd2O3 nanoparticles were prepared by the calcination of the Gd(III) complex in air at different temperatures up to 600 °C for 2 h. The calc...

متن کامل

CO2 Measurement of Synthetic Biogas by Passing It through Dilute NaOH Solution

The feasibility of measuring CO2 content in biogas was evaluated in this research. Firstly, Curtipot pH simulator was used to visualize the titration behaviors of various percentages of dissolved CO2 in a wide range of concentrations of NaOH solution. As a general output of those simulations, it was shown that when the titration curves of different CO2 conte...

متن کامل

Extraction of Silver Ions from Aqueous Solutions by Emulsion Liquid Membrane

A comprehensive study pertaining to the emulsion liquid membrane (ELM) extraction process to enrich dilute aqueous solutions of silver salt is presented. The study has highlighted the importance and influence of membrane composition for maximizing the extraction of Ag+ ions. The liquid membrane was made up of Cyanex-302 as an extractant and the industrial solvent mainly consists of p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015